伺服控制系統在數控機床中的發展現狀及展望

文:姜學明2018年第一期

    摘要:作為數控機床的重要功能部件,伺服系統的特性一直是影響系統加工性能的重要指標。數控機床中的伺服系統種類繁多,本文通過分析其結構及簡單歸分,對其技術現狀及發展趨勢作簡要探討。

1前言

    伺服系統是以機械運動的驅動設備,電動機為控制對象,以控制器為核心,以電力電子功率變換裝置為執行機構,在自動控制理論的指導下組成的電氣傳動自動控制系統。這類系統控制電動機的轉矩、轉速和轉角,將電能轉換為機械能,實現運動機械的運動要求。具體在數控機床中,伺服系統接收數控系統發出的位移、速度指令,經變換、放調與整大后,由電動機和機械傳動機構驅動機床坐標軸、主軸等,帶動工作臺及刀架,通過軸的聯動使刀具相對工件產生各種復雜的機械運動,從而加工出用戶所要求的復雜形狀的工件。作為數控機床的執行機構,伺服系統將電力電子器件、控制、驅動及保護等集為一體,并隨著數字脈寬調制技術、特種電機材料技術、微電子技術及現代控制技術的進步,經歷了從步進到直流,進而到交流的發展歷程。

2國內外發展現狀

    進入20世紀90年代,微電子制造工藝的日臻完善,使得DSP運算速度呈幾何數上升,達到了伺服環路高速實時控制的要求,一些運動控制芯片制造商還將電機控制所必需的外圍電路(如A/D轉換器、位置/速度檢測倍頻計數器、PWM發生器等)與DSP內核集成于一體,使得伺服控制回路采樣時間達到100μs以內,由單一芯片實現自動加、減速控制,電子齒輪同步控制,位置、速度、電流三環的數字化補償控制。一些新的控制算法如速度前饋、加速度前饋、低通濾波、凹陷濾波等得以實現。另一方面,電力電子技術的發展,使得伺服系統主電路功率元件的開關頻率由2~5kHz提升到15~20kHz,1GBT(絕緣柵門雙極性晶體管)及IPM(智能型功率模塊)均是這一時代的產物,從而提高了系統的平穩性,降低了系統的噪音。以上兩個方面不僅是交流伺服實現數字化的基礎,而且使得交流伺服趨于小型化。目前一些工業發達國家的伺服系統生產廠家基本上均能夠提供全數字交流伺服系統或者可以與自己的CNC系統相配套,如日本FANUC公司、三菱電機公司、安川電機公司、松下公司、山洋電機公司、德國Siemens公司、力士樂Indramat公司、Lenze公司、美國A.B公司、Kollmorgen公司、Relliance公司、Baldor公司、PacificScientific公司等。

    進給伺服以數控機床的各坐標為控制對象,產生機床的切削進給運動。為此,要求進給伺服能快速調節坐標軸的運動速度,并能精確地進行位置控制。具體要求其調速范圍寬、位移精度高、穩定性好、動態響應快。根據系統使用的電動機,進給伺服可細分為步進伺服、直流伺服、交流伺服和直線伺服。

2.1步進伺服系統

    步進伺服是一種用脈沖信號進行控制,并將脈沖信號轉換成相應的角位移的控制系統。其角位移與脈沖數成正比,轉速與脈沖頻率成正比,通過改變脈沖頻率可調節電動機的轉速。如果停機后某些繞組仍保持通電狀態,則系統還具有自鎖能力。步進電動機每轉一周都有固定的步數,如500步、1000步、50000步等等,從理論上講其步距誤差不會累計。步進伺服結構簡單,符合系統數字化發展需要,但精度差、能耗高、速度低,且其功率越大移動速度越低。特別是步進伺服易于失步,使其主要用于速度與精度要求不高的經濟型數控機床及舊設備改造。但近年發展起來的恒斬波驅動、PWM驅動、微步驅動、超微步驅動和混合伺服技術,使得步進電動機的高、低頻特性得到了很大的提高,特別是隨著智能超微步驅動技術的發展,將把步進伺服的性能提高到一個新的水平。

2.2直流伺服系統

    直流伺服的工作原理是建立在電磁力定律基礎上。與電磁轉矩相關的是互相獨立的兩個變量主磁通與電樞電流,它們分別控制勵磁電流與電樞電流,可方便地進行轉矩與轉速控制。另一方面從控制角度看,直流伺服的控制是一個單輸入單輸出的單變量控制系統,經典控制理論完全適用于這種系統,因此,直流伺服系統控制簡單,調速性能優異,在數控機床的進給驅動中曾占據著主導地位。然而,從實際運行考慮,直流伺服電動機引入了機械換向裝置。其成本高,故障多,維護困難,經常因碳刷產生的火花而影響生產,并對其他設備產生電磁干擾。同時機械換向器的換向能力,限制了電動機的容量和速度。電動機的電樞在轉子上,使得電動機效率低,散熱差。為了改善換向能力,減小電樞的漏感,轉子變得短粗,影響了系統的動態性能。

2.3交流伺服系統

    針對直流電動機的缺陷,如果將其做“里翻外”的處理,即把電驅繞組裝在定子、轉子為永磁部分,由轉子軸上的編碼器測出磁極位置,就構成了永磁無刷電動機,同時隨著矢量控制方法的實用化,使交流伺服系統具有良好的伺服特性。其寬調速范圍、高穩速精度、快速動態響應及四象限運行等良好的技術性能,使其動、靜態特性已完全可與直流伺服系統相媲美。

3數控機床上的應用

    隨著微處理器技術和大功率晶體管技術的進展,現在又進入了交流主軸伺服系統的時代。

3.1交流異步伺服系統

    交流異步伺服通過在三相異步電動機的定子繞組中產生幅值、頻率可變的正弦電流,該正弦電流產生的旋轉磁場與電動機轉子所產生的感應電流相互作用,產生電磁轉矩,從而實現電動機的旋轉。其中,正弦電流的幅值可分解為給定或可調的勵磁電流與等效轉子力矩電流的矢量和;正弦電流的頻率可分解為轉子轉速與轉差之和,以實現矢量化控制。交流異步伺服通常有模擬式、數字式兩種方式。與模擬式相比,數字式伺服加速特性近似直線,時間短,且可提高主軸定位控制時系統的剛性和精度,操作方便,是機床主軸驅動采用的主要形式。然而交流異步伺服存在兩個主要問題:一是轉子發熱,效率較低,轉矩密度較小,體積較大;二是功率因數較低,因此,要獲得較寬的恒功率調速范圍,要求較大的逆變器容量。

3.2交流同步伺服系統

    近年來,隨著高能低價永磁體的開發和性能的不斷提高,使得采用永磁同步調速電動機的交流同步伺服系統的性能日益突出,為解決交流異步伺服存在的問題帶來了希望。與采用矢量控制的異步伺服相比,永磁同步電動機轉子溫度低,軸向連接位置精度高,要求的冷卻條件不高,對機床環境的溫度影響小,容易達到極小的低限速度。即使在低限速度下,也可作恒轉矩運行,特別適合強力切削加工。同時其轉矩密度高,轉動慣量小,動態響應特性好,特別適合高生產率運行。較容易達到很高的調速比,允許同一機床主軸具有多種加工能力,既可以加工像鋁一樣的低硬度材料,也可以加工很硬很脆的合金,為機床進行最優切削創造了條件。

3.3電主軸

    電主軸是電動機與主軸融合在一起的產物,它將主軸電動機的定子、轉子直接裝入主軸組件的內部,電動機的轉子即為主軸的旋轉部分,由于取消了齒輪變速箱的傳動與電動機的連接,實現了主軸系統的一體化、“零傳動”。因此,其具有結構緊湊、重量輕、慣性小、動態特性好等優點,并可改善機床的動平衡,避免振動和噪聲,在超高速切削機床上得到了廣泛的應用。從理論上講,電主軸為一臺高速電動機,其既可使用異步交流感應電動機,也可使用永磁同步電動機。電主軸的驅動一般使用矢量控制的變頻技術,通常內置一脈沖編碼器,來實現廂位控制及與進給的準確配合。由于電主軸的工作轉速極高,對其散熱、動平衡、潤滑等提出了特殊的要求。在應用中必須妥善解決,才能確保電主軸高速運轉和精密加工。

4數控機床發展趨勢

4.1高精度化

    提高數控機床的加工精度,一般可通過減少數控系統的誤差和采用機床誤差補償技術等方法來實現。在減少CNC系統控制誤差方面,通常采取提高數控系統的分辨率、提高位置檢測精度、在位置伺服系統中采用前饋控制與非線性控制等方法;在機床誤差補償技術方面,除采用齒隙補償、絲杠螺距誤差補償和刀具補償等技術外,還可對設備熱變形進行誤差補償。另外,伺服系統的質量直接關系到數控機床的加工精度。現代數控機床采用了交流數字伺服系統,并采用新型控制理論可實現高速響應伺服系統。

4.2高速化

    要實現數控設備高速化,首先要求數控系統能對由微小程序段構成的加工程序進行高速處理,以計算出伺服電機的移動量。同時要求伺服電機能高速度地做出反應,采用32位及64位微處理器,是提高數控系統高速處理能力的有效手段。實現數控設備高速化的關鍵是提高切削速度、進給速度和減少輔助時間。

4.3高柔性化

    采用柔性自動化設備或系統,是提高加工精度和效率、縮短生產周期,適應市場變化需求和提高競爭能力的有效手段。數控機床在提高單機柔性化的同時,朝著單元柔性化和系統柔性化的方向發展。如出現了可編程控制器(PLC)控制的可調組合機床、數控多軸加工中心、換刀換箱式加工中心、數控三坐標動力單元等具有柔性的高效加工設備、柔性加工單元(FMC)、柔性制造系統(FMS)以及介于傳統自動線與FMS之間的柔性制造線(FTU)。

4.4智能化

    為適應制造業生產柔性化、自動化發展的需要,智能化正成為數控設備研究及發展的熱點,它不僅貫穿于生產加工的全過程(如智能編程、智能數據庫、智能監控),還貫穿于產品的售后服務和維修中。

    ①自適應控制技術自適應控制可根據切削條件的變化,自動調節工作參數,使加工系統能保持最佳工作狀態,從而得到較高的加工精度和較低的表面粗糙度,同時也能提高刀具的使用壽命和設備的生產效率,達到改進系統運行狀態的目的。

    ②專家系統技術將專家經驗和切削加工的一般規律與特殊規律存入計算機中,以加工工藝參數數據庫為支撐,建立具有人工智能的專家系統,提供經過優化的切削參數。

    ③故障自診斷、自修復技術在整個工作狀態中,系統隨時對CNC系統本身以及與其相連的各種設備進行自診斷、檢查。

    ④模式識別技術應用圖像識別和聲控技術,使機器自己辨認圖樣,按照自然語音命令進行加工。

4.5復合化

    在零部件一體化程度不斷提高、數量不斷減少的同時,加工的產品形狀日益復雜。另外,產品周期的縮短要求加工機床能夠隨時調整和適應新的變化,以滿足各種各樣產品的加工需求,這就要求1臺機床能夠處理以往需要幾臺機床處理的工序。在保持工序集中和減少工件重新安裝定位的前提下,使更多的不同加工過程復合在一臺機床上,以減少占地面積,減少零件傳送和庫存,保證加工精度和節能降耗的要求。

4.6高可靠性

    為了提高數控機床的可靠性,數控系統采用更高集成度的電路芯片,利用大規模或超大規模的專用及混合式集成電路,以減少元器件的數景,提高可靠性通過硬件功能軟件化,以適應各種控制功能的要求,同時采用硬件結構機床本體的模塊化、標準化和通用化及系列化,使得既提高硬件生產批量,又便于織生產和質量把關。

4.7網絡化

    數控機床的網絡化,主要是指機床通過所配裝的數控系統與外部的其他控制系統或上位計算機進行網絡連接和網絡控制。隨著信息化技術在數控機床上的大量采用,越來越多的國內用戶在進口數控機床時要求具有遠程通信服務等功能。

4.8開放式體系結構

    開放式體系結構可以大量采用通用微機的先進技術,如多媒體技術,實現聲控自動編程、圖形掃描自動編程等,其新一代數控系統的硬件、軟件和總線規范都是對外開放的,由于有充足的軟、硬件資源可供利用,不僅使數控系統制造商和用戶進行系統集成得到有力的支持,而且也為用戶的二次開發帶來極大方便,促進了數控系統多檔次、多品種的開發和廣泛應用。

5結論

    作為數控機床的重要功能部件,伺服系統的特性一直是影響系統加工性能的重要指標。圍繞伺服系統動態特性與靜態特性的提高,近年來發展了多種伺服驅動技術。可以預見隨著超高速切削、超精密加工、網絡制造等先進制造技術的發展,具有網絡接口的全數字伺服系統、直線電動機及高速電主軸等將成為數控機床行業的關注的熱點,并成為伺服系統的發展方向。

中傳動網版權與免責聲明:

凡本網注明[來源:中國傳動網]的所有文字、圖片、音視和視頻文件,版權均為中國傳動網(www.hysjfh.com)獨家所有。如需轉載請與0755-82949061聯系。任何媒體、網站或個人轉載使用時須注明來源“中國傳動網”,違反者本網將追究其法律責任。

本網轉載并注明其他來源的稿件,均來自互聯網或業內投稿人士,版權屬于原版權人。轉載請保留稿件來源及作者,禁止擅自篡改,違者自負版權法律責任。

如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。

伺服與運動控制

關注伺服與運動控制公眾號獲取更多資訊

直驅與傳動

關注直驅與傳動公眾號獲取更多資訊

中國傳動網

關注中國傳動網公眾號獲取更多資訊

熱搜詞
  • 運動控制
  • 伺服系統
  • 機器視覺
  • 機械傳動
  • 編碼器
  • 直驅系統
  • 工業電源
  • 電力電子
  • 工業互聯
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機界面
  • PLC
  • 電氣聯接
  • 工業機器人
  • 低壓電器
  • 機柜
回頂部
點贊 0
取消 0
往期雜志
  • 2025年第一期

    2025年第一期

    伺服與運動控制

    2025年第一期

  • 2024年第六期

    2024年第六期

    伺服與運動控制

    2024年第六期

  • 2024年第五期

    2024年第五期

    伺服與運動控制

    2024年第五期

  • 2024年第四期

    2024年第四期

    伺服與運動控制

    2024年第四期

  • 2024年第三期

    2024年第三期

    伺服與運動控制

    2024年第三期