" />" />

熟女人妻水多爽中文字幕,国产精品鲁鲁鲁,隔壁的少妇2做爰韩国电影,亚洲最大中文字幕无码网站

關(guān)注我們:新浪微博騰訊微博QQ空間
首頁(yè) > 行業(yè)內(nèi)外 > 聚焦

工業(yè)大數(shù)據(jù)的理論體系

文:郭朝暉 | 2018年第五期 (0) | (0)

    人們關(guān)注工業(yè)大數(shù)據(jù)的終極目標(biāo)是創(chuàng)造價(jià)值,方向是提升智能化,核心問(wèn)題是知識(shí)的獲取和應(yÄ«ng)用。因此,了解戰(zhàn)略和戰(zhàn)è¡“(shù)之間的關(guān)系是用好大數(shù)據(jù)的關(guān)鍵。本文出自微信公眾號(hào)《蟈蟈創(chuàng)新隨筆》,作者通過(guò)不同視角,就工業(yè)大數(shù)據(jù)的理論體系作出了闡述。

文/郭朝暉

    有個(gè)問(wèn)題一直困惑著我:“工業(yè)大數(shù)據(jù)”到底該講什么,才不至于以偏概全?或者說(shuō),理論體系應(yÄ«ng)該包含哪些內(nèi)容?下面是我想到的一點(diÇŽn)原則性的觀點(diÇŽn)——可以從哪些視角看待它。 

1.工業(yè)大數(shù)據(jù)的意義

    從DIKW體系的角度看,大數(shù)據(jù)將人類(lèi)帶入智能社會(huì)。大數(shù)據(jù)夠把人類(lèi)帶入智能社會(huì)的核心優(yōu)å‹¢(shì)在于“知識(shí)”的生產(chÇŽn)和應(yÄ«ng)用。我們把智能理解為“感知、決策和執(zhí)行”的統(tÇ’ng)一,則大數(shù)據(jù)能很好地提供“感知”å’Œ“決策”所需要的知識(shí)。

2.大數(shù)據(jù)與業(yè)務(wù)系統(tǒng)的關(guān)系

    å¾ˆå¤šäººæŠŠæ•¸(shù)據(jù)和大數(shù)據(jù)的概念混淆起來(lái)。一個(gè)典型的表現(xiàn)是把業(yè)å‹™(wù)系統(tÇ’ng)(如MES、ERP)的功能說(shuō)成大數(shù)據(jù)的應(yÄ«ng)用,似乎只要數(shù)據(jù)都是大數(shù)據(jù)。在我看來(lái),業(yè)å‹™(wù)系統(tÇ’ng)看數(shù)據(jù),側(cè)重?cái)?shù)據(jù)用于完成特定業(yè)å‹™(wù)的一次利用。數(shù)據(jù)作為信息的載體,數(shù)據(jù)的生命周期相對(duì)較短。大數(shù)據(jù)則側(cè)重?cái)?shù)據(jù)的二次利用或重復(fù)利用,數(shù)據(jù)主要作為知識(shí)的載體。

3.大數(shù)據(jù)的特征

    從甲乙方的視角看,甲乙雙方看待大數(shù)據(jù)的特征是不同的。其中,甲方就是希望通過(guò)大數(shù)據(jù)創(chuàng)造價(jià)值、改進(jìn)業(yè)å‹™(wù)的業(yè)å‹™(wù)人員,而乙方是幫助甲方實(shí)現(xiàn)目標(biāo)çš„IT技術(shù)人員。

    大數(shù)據(jù)的甲方視角有三個(gè)特征(樣本=全體、相關(guān)非因果、混雜性),都與獲取知識(shí)相關(guān)。而獲取了知識(shí)才能創(chuàng)造價(jià)值。大數(shù)據(jù)的乙方視角即“4V特征”,這四個(gè)特征關(guān)注的是IT技術(shù)人員數(shù)據(jù)處理的困難。

    顯然,乙方的工作應(yÄ«ng)該服從甲方的業(yè)å‹™(wù)需求。從這個(gè)意義上講,乙方可能遇到4V涉及的困難、也可能遇不到,視甲方的實(shí)際情況而定。我講的課主要是甲方視角,而ITå°ˆ(zhuān)業(yè)人士講的課主要是乙方視角。

4.大數(shù)據(jù)與知識(shí)獲取的可行性

    從甲方視角看,大數(shù)據(jù)的價(jià)值在于產(chÇŽn)生知識(shí)。人們經(jÄ«ng)常提到的大數(shù)據(jù)的幾個(gè)特征(樣本=全體、相關(guān)非因果、混雜性),都可以歸結(jié)為便于獲得知識(shí)。

  (1)樣本=全體。人類(lèi)的一切知識(shí)都來(lái)源于歷史,如果大數(shù)據(jù)能夠完整地記錄歷史,就會(huì)蘊(yùn)含知識(shí),這一點(diÇŽn)å¼·(qiáng)調(diào)的是樣本分布的完整性。

  (2)不拘泥于因果。一般說(shuō)法是“相關(guān)é—œ(guān)系而非因果關(guān)ç³»”,而我將其改為“不拘泥于因果”。人類(lèi)的知識(shí)有很多種,一種是說(shuō)不出來(lái)çš„“默會(huì)知識(shí)”,另一種是說(shuō)得清楚的知識(shí),而說(shuō)得清楚的知識(shí)又包括理論知識(shí)和經(jÄ«ng)é©—(yàn)知識(shí)。其中,理論知識(shí)是講究因果的,如果把知識(shí)拘泥于因果則是不完備的。所以,“不拘泥于因果”解決了知識(shí)完整性問(wèn)題。

  (3)混雜性。本質(zhì)是知識(shí)的可獲得、可驗(yàn)證性,保證知識(shí)的質(zhì)量。獲得知識(shí)的一個(gè)本質(zhì)要求是區(qÅ«)分偶然聯(lián)系和非偶然聯(lián)系,雜性可以用于解決這個(gè)問(wèn)題。

    換句話說(shuō),這三個(gè)特點(diÇŽn)保證了知識(shí)的存在性、完整性和可獲得性,這就是大數(shù)據(jù)的意義所在。智能制造需要知識(shí)才能形成閉環(huán)、互聯(lián)ç¶²(wÇŽng)可以讓知識(shí)的價(jià)值放大。所以,在智能制造、工業(yè)互聯(lián)ç¶²(wÇŽng)的背景下,大數(shù)據(jù)的價(jià)值猛增。

5.知識(shí)類(lèi)型的角度

    我一直認(rèn)為,大數(shù)據(jù)的價(jià)值在于獲得、存儲(chÇ”)和運(yùn)用知識(shí)的能力。而“知識(shí)”可以分類(lèi)可以從多個(gè)維度來(lái)看。

  (1)默會(huì)知識(shí)、經(jÄ«ng)é©—(yàn)知識(shí)、理論知識(shí)。

    默會(huì)知識(shí)就是說(shuō)不清楚、難以變成程序代碼的感性知識(shí)。感性知識(shí)之外的經(jÄ«ng)é©—(yàn)知識(shí),這些知識(shí)說(shuō)得清楚怎么做,不一定需要說(shuō)明原因。如某種方法較好、哪條路走的快等——實(shí)際上好就是好了,不一定需要解釋。理論知識(shí)就是說(shuō)得清楚原因、可以解釋、甚至可計(jì)算的知識(shí)。

    大數(shù)據(jù)的優(yōu)å‹¢(shì)在于可以更容易地獲得默會(huì)和經(jÄ«ng)é©—(yàn)知識(shí)。過(guò)去計(jì)算機(jÄ«)用到的知識(shí),往往需要人們寫(xiÄ›)成代碼,但這只是人們大腦中的一部分知識(shí)。單純依靠理性知識(shí),難以實(shí)現(xiàn)智能化。

 ï¼ˆ2)正向知識(shí)、逆向知識(shí)

    從原因到結(jié)果的知識(shí),我稱(chÄ“ng)之為“正向知識(shí)”。數(shù)å­¸(xué)建模過(guò)程就是建立正向知識(shí)。從結(jié)果到原因的知識(shí),我稱(chÄ“ng)為“逆向知識(shí)”——所謂的根因分析。

 ï¼ˆ3)聯(lián)系型知識(shí)、設(shè)計(jì)型知識(shí)

    因果知識(shí)、感性知識(shí)等體現(xiàn)的是信息之間的聯(lián)系,而設(shè)計(jì)型知識(shí)指的是產(chÇŽn)品、工藝設(shè)計(jì)等。設(shè)計(jì)型知識(shí)占用的計(jì)算機(jÄ«)存儲(chÇ”)量很大。在大數(shù)據(jù)時(shí)代,設(shè)計(jì)型知識(shí)容易存儲(chÇ”)、處理。

6.大數(shù)據(jù)獲得知識(shí)的途徑

    用大數(shù)據(jù)獲得知識(shí)有兩種方式,一種就是數(shù)據(jù)本身就承載知識(shí),另一種是數(shù)據(jù)承載的是信息、需要從數(shù)據(jù)提煉出知識(shí)。

     ç¬¬ä¸€ç¨®å…¸åž‹çš„例子就是產(chÇŽn)品設(shè)計(jì)數(shù)據(jù)、各種標(biāo)準(zhÇ”n)、成功案例等。快速響應(yÄ«ng)、個(gè)性化定制的前提和手段,就是知識(shí)的共享。對(duì)于這些知識(shí),有時(shí)候會(huì)面臨的困難之一是如何找到它們,而找到這些知識(shí)本身就可能是需要獲得的知識(shí),如谷歌搜索。AI算法對(duì)解決這個(gè)問(wèn)題可能是有用的。

     ç¬¬äºŒç¨®çŸ¥è­˜(shí)是前面說(shuō)的通過(guò)建模或根因分析得到的知識(shí)。工業(yè)上對(duì)知識(shí)是有明確需求的、以至于難以達(dá)到,但機(jÄ«)理卻是相對(duì)明確的。我談的很多方法論,其實(shí)就是在這兩個(gè)方面的。

7.通過(guò)大數(shù)據(jù)獲得價(jià)值

    從某種意義上說(shuō),大數(shù)據(jù)創(chuàng)造價(jià)值是促進(jìn)知識(shí)創(chuàng)造價(jià)值。這些知識(shí)要用在提高質(zhì)量、效率,降低成本等具體問(wèn)題上,才能創(chuàng)造價(jià)值。

    人們遇到的真正困惑是如何找到這些“問(wèn)題”。這些問(wèn)題大概可以分成兩類(lèi):一類(lèi)是現(xiàn)有業(yè)å‹™(wù)的痛點(diÇŽn),另一類(lèi)是轉(zhuÇŽn)型升級(jí)后面臨新的要求。

     å°(duì)于業(yè)å‹™(wù)“痛點(diÇŽn)”,往往是“該做的都做了,剩下的往往是難以做的。”所以,難以找到合適的問(wèn)題。對(duì)于這類(lèi)困惑,大數(shù)據(jù)只是手段之一。往往要綜合運(yùn)用各種手段,大數(shù)據(jù)才能給創(chuàng)造價(jià)值。

    對(duì)于另一類(lèi)困惑,往往是業(yè)å‹™(wù)本身或外部變化引發(fā)的。例如,采用了新的生產(chÇŽn)方式或技術(shù)手段、用戶(hù)對(duì)質(zhì)量要求提高了、數(shù)字化水平提高了、企業(yè)的業(yè)å‹™(wù)重心轉(zhuÇŽn)移了(創(chuàng)新和服務(wù)的比重增大了)等等。這些變化,我統(tÇ’ng)稱(chÄ“ng)為“轉(zhuÇŽn)型升級(jí)”。對(duì)于這類(lèi)新的問(wèn)題,大數(shù)據(jù)方法比較容易發(fā)揮作用。

    數(shù)據(jù)分析曾經(jÄ«ng)被認(rèn)為是“æ²’(méi)有辦法的辦法”。我把最近突然變熱的原因,歸結(jié)到智能制造相關(guān)技術(shù)引發(fā)的企業(yè)轉(zhuÇŽn)型升級(jí)。這時(shí),大數(shù)據(jù)技術(shù)進(jìn)入了一個(gè)藍(lán)海,原因不僅是獲得知識(shí)更方便等原因,更是知識(shí)的放大,把知識(shí)變成計(jì)算機(jÄ«)可執(zhí)行的代碼、實(shí)現(xiàn)人機(jÄ«)知識(shí)的共享,知識(shí)在互聯(lián)ç¶²(wÇŽng)上實(shí)現(xiàn)共享,都會(huì)讓知識(shí)的價(jià)值倍增。從而讓“知識(shí)生產(chÇŽn)”的經(jÄ«ng)濟(jì)性大大提升。

     ç¸½é«”上看,轉(zhuÇŽn)型升級(jí)是戰(zhàn)略問(wèn)題,大數(shù)據(jù)應(yÄ«ng)用是戰(zhàn)è¡“(shù)問(wèn)題。戰(zhàn)略重點(diÇŽn)的改變,才能給大數(shù)據(jù)的應(yÄ«ng)用創(chuàng)造條件。否則,再好的技術(shù)都可能成為屠龍之技。

8.大數(shù)據(jù)建模分析的方法論

     è«‡åˆ°å¤§æ•¸(shù)據(jù)分析與建模,很多人馬上想到各種算法。在我看來(lái),對(duì)數(shù)據(jù)分析與建模問(wèn)題來(lái)說(shuō),算法問(wèn)題其實(shí)是戰(zhàn)è¡“(shù)問(wèn)題——也就是說(shuō),還需要有個(gè)戰(zhàn)略問(wèn)題,用來(lái)決定分析什么問(wèn)題、分析問(wèn)題的次序和路徑等。CRISP_DM就是這個(gè)層面上的邏輯。我還想將其邏輯進(jìn)一步簡(jiÇŽn)化——明確業(yè)å‹™(wù)需求、數(shù)據(jù)分析方法、分析問(wèn)題的具體算法。

發(fā)表評(píng)論

網(wǎng)友評(píng)論僅供其表達(dá)個(gè)人看法,并不表明控制與傳動(dòng)周刊同意其觀點(diǎn)或證實(shí)其描述

雜志訂閱

填寫(xiě)郵件地址,訂閱精彩資訊:

雜志目錄

更多往期雜志

關(guān)注我們:

新浪微博騰訊微博QQ空間

友情鏈接:

紙質(zhì)雜志

給我們寫(xiě)信

主站蜘蛛池模板: 邓州市| 札达县| 汉寿县| 左权县| 霍邱县| 梁平县| 桃园县| 东台市| 托克托县| 鱼台县| 满城县| 乐陵市| 平定县| 吉木乃县| 林周县| 班戈县| 潮州市| 杭锦后旗| 景洪市| 黑山县| 西华县| 建德市| 威海市| 黄骅市| 监利县| 石阡县| 永和县| 凤翔县| 神农架林区| 屯昌县| 武乡县| 文成县| 建水县| 禄丰县| 麻城市| 曲松县| 巴马| 务川| 定南县| 宜兴市| 高台县|