熟女人妻水多爽中文字幕,国产精品鲁鲁鲁,隔壁的少妇2做爰韩国电影,亚洲最大中文字幕无码网站

技術頻道

娓娓工業(yè)
您現在的位置: 中國傳動網 > 技術頻道 > 技術百科 > 關于機器視覺的一些專業(yè)知識

關于機器視覺的一些專業(yè)知識

時間:2012-03-02 13:44:10來源:gengwt

導語:?關節(jié)角度的變化能夠有效反映人體運動的主要特性。該文提出了一種基于關節(jié)角度信息的步態(tài)識別方法。

  關節(jié)角度的變化能夠有效反映人體運動的主要特性。該文提出了一種基于關節(jié)角度信息的步態(tài)識別方法。首先對運動人體腿部建模,采用最小二乘法擬合邊界,獲取大腿和小腿關節(jié)角度的時序信息;根據步態(tài)運動的準周期性,將關節(jié)角度時序信息按傅立葉級數形式展開,采用遺傳算法搜索各次諧波的系數并進行尺度變換,生成特征向量;最后使用KNN分類器進行分類識別。該文在CMU庫上進行實驗,得到了令人滿意的識別結果,而且當步態(tài)發(fā)生遮擋或自遮擋時,該算法具有明顯的優(yōu)勢。

  1引言

  步態(tài)識別技術是一種新興的生物特征測量技術。

  指出,步態(tài)特征具有唯一性,可以利用人體步態(tài)特征進行身份識別。基于人體的步態(tài)行為特征進行識別,可以在一定程度上克服傳統(tǒng)識別技術的不足,近年來逐漸被廣泛關注。

  步態(tài)識別方法可分為基于統(tǒng)計特征和基于模型兩類。基于統(tǒng)計的方法直接從圖像序列中提取相應統(tǒng)計參數,作為對象分類識別的特征指標,如Huang等人[2]基于光流特征提出的主元分析法和線性判決方法混合變換,以及Wang等人[3]提出的基于輪廓的解卷繞識別方法等;而基于模型的方法則重點關注人的運動信息,預先建立人體模型,通過模型和圖像序列的匹配獲得模型參數,再利用這些參數作為步態(tài)特征進行分類,Lee等人[4]采用7個橢圓來匹配運動人體的二值化輪廓的不同的身體部位,然后提取橢圓的29個矩特征來分析、Yoo等人[5]根據解剖學的知識,進行軀體的拓撲分析,將人體的運動外輪廓簡化為一種2D的stick模型。

  目前,兩類方法各自存在著一些缺點:基于統(tǒng)計的步態(tài)識別方法對背景和光照信號的變化敏感,且難以回避運動場景中的遮擋現象對識別能力所造成的嚴重影響;而基于模型的步態(tài)識別方法將整個步態(tài)序列的每幀單獨看待,損失了步態(tài)周期的有機整體性。文獻[6]指出身體的動態(tài)信息主要表現為大腿和小腿的擺動規(guī)律,因此可以在建立人體模型時作一些簡化。

  針對上述問題,本文提出了一種基于關節(jié)角度信息的步態(tài)識別算法:將腿部輪廓邊界采用線段模型近似,并用最小二乘法擬合,計算出大腿和小腿的關節(jié)角度;考慮到步態(tài)運動的準周期性,將關節(jié)角度時序信息按傅利葉級數形式展開,利用遺傳算法搜索出各次諧波的系數,對各次諧波的幅度值進行尺度標準化,由此構成特征向量進行步態(tài)的分類識別。

  2腿部關節(jié)角度信息提取

  2.1運動人體輪廓提取

  采用背景消減法來提取運動目標。先計算出背景圖像和當前圖像的差值,再對差值圖像進行二值化,得到二值圖像,如圖1(a),(b),(c)所示。對上述二值圖像做進一步的后處理。最終提取出來的人體輪廓如圖1(d)所示。由于采用背景消減法是運動目標檢測的常用方法,限于篇幅,在此我們就不贅述了。

  2.2運動人體腿部建模

  文獻[5]中的Stick模型把人體看成是由若干剛體構件組成的機構,并在該假設下將運動人體骨骼化為一組服從特定連接順序的線段,且每條線段都具有一定的轉動靈活性。基于運動學分析的步態(tài)識別研究,采用各關節(jié)角度的時序變化來描述人體步態(tài)行為。在Stick模型中關節(jié)角度可定義為相應線段與給定軸線之間的夾角。考慮到腿部運動是步態(tài)的主要組成部分,本文對Stick模型進行簡化,僅對運動人體的大腿和小腿進行局部建模分析。即由輪廓圖像生成腿部線段,獲得大腿和小腿的關節(jié)角度信息。

  2.3腿部關節(jié)角度提取

  運用邊界搜索檢測出輪廓圖像中的大腿(或小腿)邊界。采用線性最小二乘法對人體輪廓圖像中的大腿(或小腿)邊界進行線段擬合,將擬合結果作為本文模型中大腿(或小腿)的對應線段。設擬合出來的線段所在直線為:

  則大腿(或小腿)對應關節(jié)角度

  為:

  對序列輪廓圖像依次進行上述處理,即提取出了大腿和小腿關節(jié)角度的時序信息。

  3腿部特征信號提取

  3.1步態(tài)信號周期性

  Murray[1]的步態(tài)研究表明步態(tài)運動具有準周期性的特點。文獻[7]使用自相似圖表確定步態(tài)周期,本文則將最大輪廓寬度取得極大值時對應的圖像幀確定為步態(tài)周期的起始點。由于單個周期包含了周期信號的全部信息,本文算法選取步態(tài)序列中任意一個步態(tài)周期參與步態(tài)識別過程。

  3.2遺傳算法搜索傅利葉級數系數

  根據傅利葉理論,周期性連續(xù)信號可按傅利葉級數形式進行展開。例如,周期為的連續(xù)信號,可展開成下式:

  式中,

  為信號的直流分量,

  對應信號各次諧波的系數,是最大諧波次數。對于步態(tài)信號而言,C.Angeloni等人[8]的研究表明,正常步態(tài)的最大頻率成分不超過5Hz,而正常步態(tài)單個周期的持續(xù)時間大約為1s,即正常步態(tài)的基波頻率為1Hz。鑒于此,本文對大腿和小腿關節(jié)角度的時序信息進行傅利葉級數展開時,均取=5。由于人體行進過程中的遮擋問題以及其它干擾因素的存在,總會出現某些幀的關節(jié)角度信息難以提取的情況,因此無法直接求解出各次諧波系數。

  遺傳算法是模仿自然界生物進化機制發(fā)展起來的隨機全局搜索和優(yōu)化方法,它能在搜索過程中自動獲取和積累有關搜索空間的知識,并自適應地控制搜索過程以求得最優(yōu)(或近似最優(yōu))解。本文采用遺傳算法來搜索各次諧波的系數,本質上是根據提取出來的有限幀關節(jié)角度,對一個步態(tài)周期內關節(jié)角度的連續(xù)變化規(guī)律進行估計。本文選定的待優(yōu)化目標函數為:

  進行多次搜索,選擇當取得最小值時的那組系數值作為步態(tài)周期的各次諧波系數。其中N為一個步態(tài)周期內的總圖像幀數,z(t)表示由第t幀圖像得到的大腿(或小腿)關節(jié)角度值,則根據遺傳算法搜索得到的系數帶入(4)式計算得到。圖2給出了根據已知關節(jié)角度信息,采用遺傳算法估計出來的某步態(tài)周期內大腿和小腿關節(jié)角度值的連續(xù)性時序變化過程。可以看出,在關節(jié)角度值已知處,估計值具有較高的估計精度。

  實驗發(fā)現,同一個人在不同步態(tài)周期中,對應的大腿(和小腿)關節(jié)角度時序變化的估計曲線頗為相似,而不同人對應的估計曲線之間則存在一定的差異。圖3給出了不同人的大腿關節(jié)角度時序變化的估計曲線。

  3.4生成步態(tài)特征向量

  不同人正常步下步態(tài)周期的持續(xù)時間有一定差異,即便是同一個人,在不同步態(tài)模式下(如快步走與慢步走)對應的步態(tài)周期也是不一致的。顯然,必須對遺傳算法搜索出的各次諧波系數進行尺度變換,方能實現準確的步態(tài)識別。本文利用傅利葉變換的尺度縮放性質,對各次諧波系數所對應的頻率進行規(guī)一化,并將變換后所得各次諧波系數的幅度值

  所組成的矢量,作為步態(tài)特征向量,用來進行步態(tài)的分類識別。

  4實驗及分析

  4.1步態(tài)數據庫

  本文采用CarnegieMellon大學CMU步態(tài)數據庫進行實驗驗證。該數據庫共含25個人,每個人包含4種不同的步態(tài)模式:慢步走、傾斜走、快步走和抱球走,如圖4所示。每種步態(tài)模式有六個視角,則每個人對應有24個步態(tài)視頻序列。每一個視頻序列約11秒長,幀頻率30幀/秒,圖像分辨率為640×480。

  4.2實驗結果及分析

  本文從CMU庫中隨機選擇了單一視角下9個人的視頻序列進行步態(tài)識別(每人有4種不同的步態(tài)模式,共計36個序列)。

  實驗選擇了最近鄰分類器和K-近鄰分類器兩種模式分類方法,使用留一校驗法對本文方法的識別率進行無偏估計。每次留出一個樣本,然后訓練所有余下樣本。最后,根據留出樣本與余下樣本的相似性來對被留出的樣本進行分類。表1給出了分別采用NN和3NN分類器的正確識別率。

  從表1可以看出,將特征向量采用級聯(lián)方式的融合,并選用3NN分類器進行分類,可以獲得更高的識別率。特征向量級聯(lián)在一定程度上避免了由于單個關節(jié)特征數據誤差所導致的誤判。采用NN分類器時,對慢步走和抱球走兩種步行狀態(tài),級聯(lián)識別率相對于小腿關節(jié)識別率并沒有明顯的提高,這可能跟樣本數量有限有關。

  4.3算法比較

  表2列出和本文采用相同或類似規(guī)模數據庫的文獻相關算法的識別結果,具有一定的可比性,從統(tǒng)計的結果可以看出本文算法具有較高的識別率。

  5結語

  本文提出了一種基于關節(jié)角度信息的步態(tài)識別算法,克服了通常情況下因遮擋而無法識別的難題。并在CMU庫上對該方法進行了實驗驗證,獲得了令人滿意的識別效果。本文僅考慮了單一視角(攝像機鏡頭的主軸與人的行走方向垂直)的情況。

  進一步的研究包括:提高算法的實時性和魯棒性,在更大規(guī)模的數據庫中對本文方法進行識別性能測試,并分析特征提取對視角變化的敏感性,提取對于視角與人的行走速度不敏感的步態(tài)特征。

  參考文獻

  [1]MurrayM.P,DroughtAB,KoryRC.Walkingpatternsofnormalmen,J.BoneJointSurg,6-A(2)(1964)335–360.

  [2]HuangP,HarrisC,NixonM.Humangaitrecognitionincanonicalspaceusingtemporaltemplates.VisionImageandSignalProcessing,1999,146(2):93-100

  [3]WangL,HuWMandTanTN.Silhouetteanalysisbasedgaitrecognitionforhumanidentification.IEEETrans.PatternAnalysisandMachineIntelligence,2003,Vol.25,No.12,pp.1505-151

標簽:

點贊

分享到:

上一篇:英諾伺服 特種磁編碼器設計

下一篇:微能WIN-V63矢量控制變頻器在...

中國傳動網版權與免責聲明:凡本網注明[來源:中國傳動網]的所有文字、圖片、音視和視頻文件,版權均為中國傳動網(www.hysjfh.com)獨家所有。如需轉載請與0755-82949061聯(lián)系。任何媒體、網站或個人轉載使用時須注明來源“中國傳動網”,違反者本網將追究其法律責任。

本網轉載并注明其他來源的稿件,均來自互聯(lián)網或業(yè)內投稿人士,版權屬于原版權人。轉載請保留稿件來源及作者,禁止擅自篡改,違者自負版權法律責任。

網站簡介|會員服務|聯(lián)系方式|幫助信息|版權信息|網站地圖|友情鏈接|法律支持|意見反饋|sitemap

傳動網-工業(yè)自動化與智能制造的全媒體“互聯(lián)網+”創(chuàng)新服務平臺

網站客服服務咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2025 ,All Rights Reserved 深圳市奧美大唐廣告有限公司 版權所有
粵ICP備 14004826號 | 營業(yè)執(zhí)照證書 | 不良信息舉報中心 | 粵公網安備 44030402000946號

主站蜘蛛池模板: 仁布县| 合江县| 武胜县| 鄂伦春自治旗| 朔州市| 遂宁市| 新安县| 泾阳县| 广东省| 介休市| 灵璧县| 新巴尔虎左旗| 皮山县| 永川市| 个旧市| 精河县| 大渡口区| 平山县| 丹凤县| 泰来县| 新泰市| 卓尼县| 巴彦淖尔市| 化德县| 德保县| 钟祥市| 布尔津县| 平昌县| 安吉县| 闻喜县| 齐齐哈尔市| 华宁县| 伊吾县| 泽普县| 桂林市| 巴东县| 呼图壁县| 泸西县| 荥阳市| 安徽省| 河北省|